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Abstract

Current adversarial attack research reveals the vulnera-
bility of learning-based classifiers against carefully crafted
perturbations. However, most existing attack methods have
inherent limitations in cross-dataset generalization as they
rely on a classification layer with a closed set of categories.
Furthermore, the perturbations generated by these meth-
ods may appear in regions easily perceptible to the hu-
man visual system (HVS). To circumvent the former prob-
lem, we propose a novel algorithm that attacks semantic
similarity on feature representations. In this way, we are
able to fool classifiers without limiting attacks to a spe-
cific dataset. For imperceptibility, we introduce the low-
frequency constraint to limit perturbations within high-
frequency components, ensuring perceptual similarity be-
tween adversarial examples and originals. Extensive ex-
periments on three datasets (CIFAR-10, CIFAR-100, and
ImageNet-1K) and three public online platforms indicate
that our attack can yield misleading and transferable ad-
versarial examples across architectures and datasets. Ad-
ditionally, visualization results and quantitative perfor-
mance (in terms of four different metrics) show that the
proposed algorithm generates more imperceptible pertur-
bations than the state-of-the-art methods. Code is made
available at https://github.com/LinQinLiang/
SSAH-adversarial-attack.

1. Introduction

With the advent of deep learning, neural network mod-
els [10, 12, 16, 32] have demonstrated revolutionary perfor-
mance in recognition tasks of real-world datasets. Never-
theless, the vulnerability of deep neural networks (DNNs)
to image corruptions and adversarial examples has been un-
veiled [8, 35]. This problem hinders the applications of

*Equal Contribution
†Corresponding Author

(a)

(b)

(c)

Adversarial Example Perturbation

Figure 1. Comparison of the adversarial examples and perturba-
tions generated by three different attack methods: (a) C&W, (b)
Our SSA (semantic similarity attack), and (c) Our SSAH (seman-
tic similarity attack on high-frequency components). For the vi-
sualization, we regularize the perturbation by taking its absolute
value and multiplying it by 25.

DNNs in security-critical domains and promotes research
on understanding the robustness of DNNs, including adver-
sarial attack [1, 8] and defense [22, 36, 40, 44].

The most intuitive approaches for white-box attacking
are to increase the cost of the classification loss [8] to yield
adversarial examples via gradient descent. Besides, they
further apply ℓp distance to constrain the visual differences
between benign and perturbed images. However, conven-
tional approaches may suffer from the two open problems:

• Inherent limitation in cross-dataset generalization.

https://github.com/LinQinLiang/SSAH-adversarial-attack
https://github.com/LinQinLiang/SSAH-adversarial-attack


Due to the classification layer with learned weight vec-
tors representing specific class proxies, current attack
paradigms based on a white-box or surrogate classifier
are limited to this setting, where images of the model
training and attack domains are from the same set of
categories. In real-world scenarios, however, an im-
age from an open set [25] may belong to an unknown
category to the classifier.

• Poor imperceptibility to HVS. Sharif et al. [30] have
demonstrated that the ℓp distance metric is insufficient
for assessing perceptual similarity. In other words, vi-
sual imperceptibility may not be explicitly reflected us-
ing only the perturbation intensity. For instance, C&W
[1], a well-known attack method, generates easy-to-
perceive perturbations on the smooth background, as
shown in Fig. 1 (a).

Intuitively, a natural approach to circumvent the classi-
fication layer is to perform attacks in the feature space. In
this work, we propose a general adversarial attack, namely
semantic similarity attack (SSA), which builds on the simi-
larity of feature representations. More specifically, we push
apart the representations of adversarial and benign exam-
ples but pull that of adversarial and target (the most dissim-
ilar) examples together. In this way, we can fool classifiers
without the knowledge of the specific image category. The
underlying assumption is that the high-level representation
implies image discrimination and semantics. Hence, per-
turbing such representation can guide perturbations towards
semantic regions within pixel space. As shown in Fig. 1 (b),
SSA focuses on perturbing semantic regions such as objects
in the scene while suppressing redundant perturbations on
irrelevant regions.

In addition to ℓp norms [1,2,26,27], other measures such
as CIEDE2000 [46], SSIM [9] and LPIPS [18] are applied
to approximate perceptual similarity. In this work, we pro-
vide a different metric from the frequency domain perspec-
tive. Generally, the low-frequency component of an image
contains the basic information, whereas the high-frequency
components represent trivial details and noise. Inspired by
it, we measure the variations of low-frequency components
as the perceptual variations in image pixel space. We further
build a low-frequency constraint to limit the perturbations
within imperceptible high-frequency components. As de-
picted in Fig. 1 (c), the perturbations generated by the pro-
posed framework, i.e., SSAH, appear mostly on impercep-
tible regions such as object edges. Some works show that
adversarial examples may be neither in high-frequency nor
low-frequency components [23], and low-frequency pertur-
bations with much perceptibility are especially effective for
attacking defended models [31]. Nevertheless, we consider
that developing attacks in high-frequency components is
significant, as it helps improve perturbation imperceptibil-

ity to HVS and learn robust models that better align with
human perception. Recent works [38, 41] also prove that
these high-frequency signals are barely perceivable to HVS
but can largely determine the prediction results of DNNs.

The main contributions can be summarized as follows:

• We propose a novel adversarial attack, SSA, which is
applicable in wide settings by attacking the semantic
similarity of images.

• We present a new perturbation constraint, the low-
frequency constraint, into the joint optimization of
SSA to limit perturbations within the imperceptible
high-frequency components.

• We conduct extensive experiments on three datasets,
i.e., CIFAR-10, CIFAR-100, and ImageNet-1K, and
the experiment results show that our proposed attack
outperforms the state-of-the-art methods by signifi-
cantly imperceptible perturbations.

• Experimental results demonstrate that adversarial per-
turbations generated by our SSAH are more transfer-
able across different architectures and datasets.

2. Related Work

Feature Space Attack. Feature space attacks [13, 29] ma-
nipulate the image representation to appear remarkably sim-
ilar to the target image from a different class. The same
goal of these methods is to directly minimize the Euclid-
ian distance between intermediate layer features of source
and target images in the target DNN. Similar attacks re-
cently applied to Person Re-identification [37, 39] or Im-
age Retrieval [7, 19] generate adversarial perturbations or
patterns by minimizing the distance of the inter-class pair
while maximizing the distance of the intra-class pair. In
this work, we perturb the class-specific representations of
image instances from the perspective of feature similarity
and design a more flexible optimization scheme.
Imperceptible Attack. A rich line of works [1, 8, 9, 14,
18,45,46] resort to devising perceptual similarity metrics to
constrain perturbations during adversarial example genera-
tion. Among these metrics, ℓp norms of perturbations are
generally employed [1]. However, recent works have re-
vealed that ℓp norms do not well align with human percep-
tion. Thus, other perceptual distances in terms of similarity
of object structures [9], edges [14], color [46], and Learned
Perceptual Image Patch Similarity (LPIPS) [18,45] are pro-
posed to improve the imperceptibility of perturbations. In
this work, we decompose images into various frequency
components by wavelets and measure image pair similarity
via the distance of their low-frequency components.
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Figure 2. An overview of proposed SSAH. Left: Semantics Similarity Attack; Right: Low-frequency Constraint. f(·) is the mapping
from an image to its embedding in representation space. ϕ(·) is a shallow network that decomposes an image into different frequency
components and reconstructs it using the low-frequency component.

Wavelets in Deep Learning. Wavelet is an effective tool
for time-frequency analysis, and Discrete Wavelet Trans-
form (DWT) is frequently used to decompose image data
into various frequency components. Recent works [6, 21]
explore implementing wavelet transform in deep learning
for various visual tasks such as image segmentation. In par-
ticular, Li et al. [20] design a DWT/IDWT layer, making
discrete wavelet transform easily applicable in DNNs.

3. Methodology
In a white-box setup, an adversary can access details of

the target classifier (i.e., architectures, parameters, gradi-
ents of the loss with respect to (w.r.t.) the input) to craft an
adversarial example xadv = x+δ with the image perturba-
tion δ to the benign example x. Generally, a distance metric
D is required to quantify the perceptual similarity (between
an adversarial example and its original one) and is used as
the constraint of the perturbation. We can formulate the
adversarial examples in the untargeted attack scenario as a
solution to the following problem:

xadv = x+ argmin
δ

{D(x,x+ δ)| argmax
i

{z′i} ≠ y},

(1)
where z′i = wT

i f(x + δ) denotes the logit (i.e., the simi-
larity score between the embedding vector f(x+ δ) of the
example and the weight vector wi (i = 1, 2, . . . , C), y de-
notes the ground-truth label and C is the number of classes.

In this work, we propose a novel semantic similar-

ity attack on high-frequency components (SSAH), and the
framework is depicted in Fig. 2. SSAH is composed of
an attack paradigm (semantic similarity attack) and a new
perturbation constraint (low-frequency constraint). The se-
mantic similarity attack does not require the classification
layer but tends to change the similarity of pairwise feature
representations. The low-frequency constraint preserves the
basic information of objects and limits perturbations within
imperceptible high-frequency components.

3.1. Semantics Similarity Attack

3.1.1 Attack Design

Conventional white-box attack methods solve the problem
presented in Eq. (1) by maximizing the classification loss
or changing logits. However, given a minibatch of N in-
stances, i.e., X = [x1,x2, . . . ,xN ], we instead optimize
the representation of the i-th adversarial example xadv

i as:

xadv
i = argmin

x′
i

[s′i,i −min{s′i,j |j ̸= i}]+, (2)

where [·]+ denotes max(·, 0), x′
i is the optimization variable

and initialized as xi, s′i,i = sim(f(x′
i), f(xi)) and s′i,j =

sim(f(x′
i), f(xj)) are similarity scores. In our method, we

use cosine similarity of embeddings, which is defined as:

s′i,j =
f(x′

i)
T f(xj)

∥f(x′
i)∥2∥f(xj)∥2

. (3)



Likewise, we can define the attack in the targeted scenario
as:

xadv
i = argmin

x′
i

[s′i,i − s′i,t]+, (4)

where t denotes the index of the target image in the mini-
batch. Eq. (4) aims to encourage the adversarial example x′

i

to be close to the target xt in terms of the feature represen-
tation. Without loss of generality, we only discuss the case
of untargeted attacks.

The attack objective in Eq. (1) changes logits of the clas-
sification layer. In other words, it pushes the embedding
of an adversarial example apart from its ground-truth class
centroid. By contrast, we directly change pair-wise similar-
ity: reducing the similarity between the adversarial example
and its original, while increasing the similarity between the
adversarial example and its most dissimilar one in the mini-
batch. In this way, our attack misleads a classifier to map
the example representation into a different subspace.

3.1.2 Self-paced Weighting

To avoid redundant perturbations, we design a self-paced
weighting scheme to improve the optimization flexibility.
This scheme design is inspired by Circle loss [33] that uses
it in metric learning. It aims at adjusting the optimization
pace for each similarity score as:

xadv
i = argmin

x′
i

LSSA(xi,x
′
i)

= argmin
x′

i

[αis
′
i,i − βi min{s′i,j |j ̸= i}]+,

(5)

where αi and βi are adjusted in a self-paced manner as:{
αi = [s′i,i −m]+,

βi = [1 +m−min{s′i,j |j ̸= i}]+,
(6)

where m ≥ 0 is a pre-defined margin. Eq. (6) is the weight
factor setting for our attack. Compared to the optimization
of (s′i,i − s′i,j) in Eq. (2), we introduce the adaptive weight-
ing as (αis

′
i,i − βis

′
i,j). During the optimization of variable

x′
i, the gradient with respect to (αis

′
i,i − βis

′
i,j) is multi-

plied with αi (βi) when back-propagated to s′i,i (s′i,j). Con-
sequently, the similarity score close to its optimum is as-
signed with a smaller gradient, whereas the less optimized
similarity score is assigned with a larger gradient.

3.2. Low-frequency Constraint

Although SSA yields perturbations in the representation
space, there is still a risk that these perturbations may dis-
tribute in regions perceptible to HVS. Conventional con-
straints, on the other hand, may result in a random distri-
bution of perturbation. Therefore, we seek a new constraint
into the joint optimization of SSA, limiting perturbations
into imperceptible details of objects.

Figure 3. Illustration of our image decomposition and reconstruc-
tion by wavelet transforms. An image x with complex (e.g., Part
A) and smooth (e.g., Part B) contexts can be decomposed into the
low-frequency component (xll) and high-frequency components
(xlh, xhl and xhh) by Discrete Wavelet Transform (DWT). The
reconstructed image x̄ has the same fundamental shape and reso-
lution as the original image x.

We observe that HVS is more sensitive to object struc-
tures and smooth regions, whereas it is not easy to perceive
object edges and complex textures. For example, the per-
turbations hidden in the dense bubbles of Part A (in Fig. 3)
are more invisible than those in the smooth background like
Part B. It motivates us to limit perturbations into regions
less sensitive to HVS.

From a frequency domain perspective, the high-
frequency components representing noise and textures are
more imperceptible than the low-frequency component con-
taining basic object structure. As a time-frequency analysis
tool, discrete wavelet transform (DWT) can decompose an
image x into one low-frequency and three high-frequency
components, i.e., xll, xlh, xhl, xhh as:

xll = LxLT ,xlh = HxLT ,

xhl = LxHT ,xhh = HxHT ,
(7)

where L and H are the low-pass and high-pass filters of
an orthogonal wavelet, respectively. As shown in Fig. 3,
xll preserves the low-frequency information of the original
image, whereas xlh, xhl and xhh are associated with edges
and drastic variations.

Normally, inverse DWT (IDWT) uses all four compo-
nents to reconstruct the image. In this work, we drop the
high-frequency components and reconstruct an image with
only the low-frequency component as x̄ = ϕ(x), where

ϕ(x) = LTxllL = LT (LxLT )L. (8)

Based on this process of image decomposition and recon-
struction, we can obtain the main image information. It
means that we can assess the perceptual similarity between



two images in terms of the main information. On that basis,
we develop a new constraint between x and x′:

Dlf (x,x
′) = ∥ϕ(x)− ϕ(x′)∥1. (9)

Consequently, the loss of perceptual information specific to
perturbed images is reduced by minimizing Eq. (9).

3.3. The Unified Attack

We define the objective of SSAH as the semantic simi-
larity attack SSA under the new constraint Dlf . The adver-
sarial example xadv

i can be obtained as:

xadv
i = argmin

x′
i

LSSAH(xi,x
′
i)

= λDlf (xi,x
′
i) + LSSA(xi,x

′
i),

(10)

where λ is a hyperparameter specific to the low-frequency
constraint. In practice, we replace x′

i with a variable ri =
arctanh(2x′

i − 1) for optimization. For clarity, we present
the pseudo-code in Algorithm 1 to outline the main proce-
dures of our SSAH.

Algorithm 1 Adversarial attack with SSAH
Require: A minibatch of original images {xi}Ni=1; the
number of iterations K; the encoder f(·) of a classi-
fier.

1: Initialize {x′
i}Ni=1 with {xi}Ni=1;

2: for i = 1 to N do
3: Initialize the variable ri as arctanh(2x′

i − 1);
4: for k = 1 to K do
5: Calculate the cosine similarity scores {s′i,j}Nj=1 as

in Eq. (3) and use s′i,i and the lowest similarity
score min{s′i,j |j ̸= i} in Eq. (5);

6: Calculate the constraint loss Dlf (xi,x
′
i) as in

Eq. (9);
7: Optimize the variable ri by minimizing

LSSAH(xi,x
′
i) as in Eq. (10) and obtain x′

i

through ri;
8: end for
9: end for

10: return {x′
i}Ni=1.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate the performance of our method on
three general datasets, namely CIFAR-10 [15], CIFAR-100
[15], and ImageNet-1K [28]. In particular, CIFAR-10 con-
tains 50K training samples and 10K testing samples with the
size of 32×32 from 10 classes; CIFAR-100 has 100 classes,
containing the same number of training (testing) samples as

CIFAR-10; ImageNet-1K has 1K classes, containing about
1.3M images for training and 50K images for validation.
Implementation details. Adam optimizers with the learn-
ing rates of 0.01, 0.01, and 0.001 are used for C&W, PerC-
AL [46] and our SSAH, respectively. The default values for
the hyperparameters m in Eq. (6) and λ in Eq. (10) are 0.2
and 0.1, respectively. The perturbation budget (ϵ) is set to
8/255 under the ℓ∞ for BIM [17], PGD [22], AA (AutoAt-
tack) [3] and MIM [4], respectively. This budget is specified
with the iterative step size α = 1/255. We use ResNet-20
models that achieve the 7.4% and 30.4% top-1 test errors
on CIFAR-10 and CIFAR-100, respectively, as the white-
box model for these two datasets. For ImageNet-1K, pre-
trained ResNet-50 that achieves the 23.85% top-1 error is
employed. For the DWT/IDWT layer in our low-frequency
constraint, Haar wavelet is used. All our experiments are
conducted on a NVIDIA A100 GPU with 40GB memory.
Evaluation metrics. For the performance evaluation and
comparison, we use the attack success rate (ASR) and four
different metrics, including conventional average ℓ2 distor-
tion, maximum perturbation intensity (ℓ∞), Fréchet Incep-
tion Distance (FID) [11] and a newly introduced metric, i.e.,
average distortion of low-frequency components (LF) based
on 2D DWT, for approximating the perceptual similarity.
LF (LF = 1

N

∑N
i=1 ∥ϕ(xi) − ϕ(xadv

i )∥2) is employed to
quantify average variations of the basic structure informa-
tion between the original and adversarial examples.

4.2. White-box Attacks

In this section, we evaluate the adversarial strength and
imperceptibility of the examples generated by different ap-
proaches in a white-box scenario, where the knowledge of
the target system is fully accessible.

Tab. 1 shows the performances of nine attack approaches
in terms of five different metrics. It demonstrates that our
attack, with the lowest ℓp (i.e., ℓ2 or ℓ∞) norm of pertur-
bations, is successful on all three datasets. More impor-
tantly, our semantic similarity attack (SSA), without tightly
constraining the ℓp norms or other perceptual distances, can
generate perturbations that are imperceptible.

Generally, FID is consistent with human judgment and
well reflects the level of disturbance. It calculates the dis-
tance between the benign and perturbed images in the fea-
ture space of an Inception-v3 [34] network. The proposed
SSAH achieves the FID of 3.90 on Imagenet-1K, which out-
performs the state-of-the-art models like PerC-AL (11.56
FID) by a large margin. Such improvement suggests that
our feature-oriented attack generates adversarial examples
with more realistic visual effects in pixel space but fewer
variations in feature space.

Tab. 1 also shows that our attack significantly outper-
forms the other methods among all cases in terms of LF.
It implies that our attack can effectively preserve the ob-



Dataset Attack Iteration RunTime (s) ↓ ASR (%) ↑ ℓ2 ↓ ℓ∞ ↓ FID ↓ LF ↓

CIFAR-10

BIM [17] 10 35 100 0.85 0.03 14.85 0.23
PGD [22] 10 37 100 1.28 0.03 27.86 0.34
MIM [4] 10 46 100 1.90 0.03 26.00 0.48
AA ℓ∞ [3] 100 184 100 1.91 0.03 34.93 0.61
AdvDrop [5] 150 392 99.92 0.90 0.07 16.34 0.34
C&W ℓ2 [1] 1000 991 100 0.39 0.06 8.23 0.11
PerC-AL [46] 1000 1221 98.29 0.86 0.18 9.58 0.15
SSA (ours) 150 192 99.96 0.29 0.02 5.73 0.07
SSAH (ours) 150 198 99.94 0.26 0.02 5.03 0.03

CIFAR-100

BIM [17] 10 34 99.99 0.85 0.03 15.26 0.32
PGD [22] 10 31 99.99 1.29 0.03 27.74 0.42
MIM [4] 10 30 99.99 1.87 0.03 26.04 0.65
AA ℓ∞ [3] 100 184 100 1.91 0.03 33.86 0.61
AdvDrop [5] 150 332 99.93 0.80 0.07 15.59 0.31
C&W ℓ2 [1] 1000 751 100 0.52 0.07 11.04 0.19
PerC-AL [46] 1000 919 99.61 1.41 0.21 12.83 0.37
SSA (ours) 150 150 99.90 0.48 0.03 9.68 0.17
SSAH (ours) 150 149 99.80 0.45 0.03 9.20 0.13

ImageNet-1K

BIM [17] 10 3998 99.98 26.85 0.03 51.92 11.18
PGD [22] 10 3451 99.98 54.97 0.03 45.51 17.41
MIM [4] 10 7847 99.98 91.78 0.03 101.88 39.42
AA ℓ∞ [3] 100 27312 96.97 71.62 0.03 77.49 30.45
AdvDrop [5] 150 48355 99.76 14.95 0.06 11.28 5.67
C&W ℓ2 [1] 1000 > 100000 99.27 1.51 0.04 12.14 0.67
PerC-AL [46] 1000 > 100000 98.78 4.35 0.12 11.56 1.59
SSA (ours) 200 35414 98.56 2.34 0.01 4.63 1.05
SSAH (ours) 200 38018 98.01 1.81 0.01 3.90 0.06

Table 1. Results of the attack success rate (ASR) and three metrics related with perceptual similarity by nine attack approaches in the
untargeted scenario. The best results are marked in bold.

MIMPGD C&W SSAHOriginal PerC-AL

Figure 4. Adversarial examples generated by five different attack
approaches on CIFAR-100.

ject structure and the low-frequency component. The re-
sults specific to the targeted attack scenario follow a similar
pattern and can be found in the supplementary material.

Fig. 4 shows the adversarial examples generated by five
approaches on CIFAR-100. Meanwhile, Fig. 5 displays ad-

versarial examples and perturbations (with the same reg-
ularization as Fig. 1) of higher resolution images from
ImageNet-1K. It is observed that images produced by our
SSAH appear more natural to HVS.

4.3. Robustness

Defense Attack CIFAR-10 CIFAR-100

FSAT [43]

No Attack 89.98 74.11
AdvDrop [5] 70.26 40.83
C&W [1] 60.60 25.04
PerC-AL [46] 89.80 74.00
SSAH (ours) 60.43 4.85

TRADES [44]

No Attack 84.92 56.94
AdvDrop [5] 84.42 56.37
C&W [1] 81.24 48.51
PerC-AL [46] 84.70 56.90
SSAH (ours) 78.68 49.23

Table 2. Recognition accuracy (%) of two defense methods under
four white-box attacks.

To study the robustness of the proposed attack, we com-



PerC-ALOriginal C&W SSAH

Figure 5. Adversarial examples and perturbations generated by three attack approaches on two high-resolution images from ImageNet-1K.
This figure is best viewed in color/screen.

pare the attack success rates of four attack approaches
against two defense schemes (FSAT [43] and TRADES
[44]). The same network architecture as [44], i.e., WRN-
34-10 introduced in [42], is used to generate adversarial
perturbations.

Based on the network trained with the defense method
FSAT, our attack decreases the model accuracy by a large
margin, i.e., 29.55% on CIFAR-10 and 69.26% on CIFAR-
100, and largely outperforms other approaches on CIFAR-
100, as shown in Tab. 2. Against the more robust defense
method (i.e., TRADES), SSAH can still achieve competi-
tive results. For CIFAR-10, an improvement of 2.56% is
achieved by SSAH compared with C&W.

4.4. Transferability

To study the transferability of the proposed algorithm in
an open-set setting, we evaluate adversarial examples trans-
ferred across both architectures and datasets. That is, with-
out the knowledge of the training set and architecture of a
black-box model (e.g., ResNet-18), we study to which ex-
tent attack approaches, based on another architecture (e.g.,
ResNet-20) trained on another dataset (e.g., CIFAR-10), af-
fect the classification of this black-box model on the val-
idation set (e.g., ImageNet-1K). We use Gaussian noise
and input-agnostic perturbations (i.e., GD-UAP [24]) as the
baselines and the ℓ∞-norm bound of 10/255 for the pertur-
bation generation. The experimental results in Tab. 3 show
that our SSAH significantly outperforms these two base-
lines for eight out of eight cases.

To test attack effectiveness in real-world scenarios, we
conduct experiments of attacking the online models on Mi-

Surrogate Training set Attack ResNet-18 VGG-16

- - Gaussian Noise 9.18 10.20

ResNet-20 CIFAR-10 GD-UAP [24] 14.09 11.44
SSAH (ours) 17.66 16.87

ResNet-20 CIFAR-100 GD-UAP [24] 12.72 10.22
SSAH (ours) 18.31 18.68

VGG-11 CIFAR-10 GD-UAP [24] 14.63 12.38
SSAH (ours) 16.92 17.52

VGG-11 CIFAR-100 GD-UAP [24] 12.93 10.39
SSAH (ours) 17.92 19.14

Table 3. The attack success rates (%) of transferring adversarial
examples across different architectures and datasets. The first col-
umn (Surrogate) and the second column (Training set) represent
the surrogate’s architecture and training set, respectively. The tar-
get classifier (i.e., ResNet-18 or VGG-16) is trained on a different
dataset (i.e., ImageNet-1K) and the validation set of ImageNet-1K
is used for the testing.

crosoft Azure1, Tencent Cloud2 and Baidu AI Cloud3. The
model and training data used in their platforms are com-
pletely unknown to us. We randomly sample 200 images
from the ImageNet-1K validation set (the image names are
listed in our supplementary material) and perturb them us-
ing four attack approaches on ResNet-152. Tab. 4 shows
the attack success rates of these attacks against the online
models. In Tab. 4, the proposed attack, without any clas-
sification query, achieves an attack success rate of 37.98%
against the online model on Tencent Cloud, which outper-

1https://azure.microsoft.com/
2https://cloud.tencent.com/
3https://cloud.baidu.com/



Attack Microsoft Azure Tencent Cloud Baidu AI Cloud

AdvDrop [5] 16.26 15.83 17.82
C&W [1] 13.82 21.71 27.72

PerC-AL [46] 15.45 18.61 18.81
SSAH (ours) 18.70 37.98 36.63

Table 4. The attack success rates (%) of transferring adversarial
examples to three online models.

forms the other approaches by a large margin.

4.5. Analysis

In this section, we give insight into the working mecha-
nism of the proposed attack and study the behavior of each
component in the attack.

Label: automobile

Label: horse

Label: ship

Label: bird

Label: automobile

Label: horse

Label: ship

Label: bird

(b)(a)

Adversarial Example Original Target

Figure 6. The 2D feature representation of the adversarial exam-
ples using the t-SNE algorithm under (a) SSAH and (b) C&W.
An adversarial example representation gradually updates from its
original class (horse) to the selected target class (ship). The results
in the iteration of 10, 15, 20, 30, and 40 are presented.

To study the adversarial example generation of the pro-
posed semantic similarity attack, we visualized the itera-
tive adversarial examples on the 2D plane in Fig. 6. In this
analysis, a subset of random instances of four classes from
CIFAR-10 is used for visualization. Fig. 6 shows our attack
can iteratively push the adversarial example away from the
benign example, and gradually guide it toward the target
class in the feature representation space. Compared with
C&W, our semantic similarity attack is more effective at
misleading a white-box network into mapping an image to
the target class subspace.

To study the performance of the proposed low-frequency
constraint, normalized perturbations by SSA and SSAH in
different iterations are visualized in Fig. 7. This figure
shows that the perturbations generated by SSA are prone
to distribute on object foreground as well as some smooth
background regions, whereas the perturbations by SSAH
gradually appear in edges or complex textures.

To quantify the contribution of each component in
SSAH, we conduct an ablation study in Tab. 5. The results
in the 1st and 2nd rows of Tab. 5 show SSA, with the ad-
justment of SPW, significantly reduces FID by a margin of
1.20 compared to the variant without SPW. The results in

iter. 1 iter. 10 iter. 150 iter. 1000

SSA

SSAH

Figure 7. Normalized perturbations generated by SSA and SSAH
in different iterations.

Attack ℓ2 ↓ ℓ∞ ↓ FID ↓ LF ↓

SSA w/o SPW 3.12 0.01 5.83 1.40
SSA 2.34 0.01 4.63 1.05

SSAH 1.81 0.01 3.90 0.06

Table 5. Ablation study of the proposed attack on ImageNet-
1K based on different modules, i.e., self-paced weighting (SPW),
low-frequency constraint Dlf . w/o SPW means deleting the self-
spaced weighting.

the 2nd and 3rd rows show that the proposed low-frequency
constraint largely improves LF, i.e., from 1.05 to 0.06.

5. Conclusion
We propose a novel framework, SSAH, for adversarial

attack. It aims to perturb images by attacking their seman-
tic similarity in representation space. Such an approach of
attacking images in the feature space works well in a variety
of settings. The proposed framework, in particular, could be
used in more general and practical black-box settings, such
as generating transferable adversarial examples across ar-
chitectures and datasets and misleading actual online mod-
els on various platforms while retaining high impercepti-
bility. It is more common in practice to attack in the open
set scenario. For this reason, developing more effective al-
gorithms in this scenario is worthwhile. Furthermore, the
low-frequency constraint is introduced to limit adversarial
perturbations within high-frequency components. Exten-
sive experiments show that such constrained perturbations
improve imperceptibility, particularly in smooth regions.
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